Synthesis of 4-Alkyl(aryl, hetaryl)-2-thioxo-5,6,7,8-tetrahydroquinoline-3-carbonitriles and Their Derivatives by Cross-Recyclization of 4-Alkyl(aryl, hetaryl)-2,6-diamino-4*H*thiopyran-3,5-dicarbonitriles with 4-(Cyclohex-1-en-1-yl)morpholine, Alkyl Halides, and Cyclohexanone

V. D. Dyachenko and A. D. Dyachenko

Taras Shevchenko National Pedagogical University, ul. Oboronnaya 2, Lugansk, 91011 Ukraine e-mail: dvd lug@online.lg.ua

Received August 9, 2005

Abstract—Cross recyclization of 4-substituted 2,6-diamino-4*H*-thiopyran-3,5-dicarbonitriles with 4-(cyclo-hex-1-en-1-yl)morpholine, alkyl halides, and cyclohexanone gave the corresponding substituted 2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitriles, 2-alkylsulfanyl-5,6,7,8-tetrahydroquinoline-3-carbonitriles, 3-amino-5,6,7,8-tetrahydrothieno[2,3-*b*]quinoline-2-carboxamides, and 4-oxo-2,2-pentamethylene-1,2,3,4,7,8,9,10-octahydropyrimido[4',5':4,5]thieno[2,3-*b*]quinolines. The structure of 3-(4-bromophenyl)-2,2-pentamethylene-11-(2-thienyl)-1,2,3,4,7,8,9,10-octahydropyrimido[4',5':4,5]thieno[2,3-*b*]quinoline was proved by X-ray analysis.

DOI: 10.1134/S1070428008030172

It was shown previously [1] that cross-recyclization of 4-aryl-2,6-diamino-4*H*-thiopyran-3,5-dicarbonitriles with hydrazines leads to the formation of 4-aryl-2,6dihydrazinopyridine-3,5-dicarbonitriles [1]. Crossrecyclization of the same thiopyran derivatives with pyridinium ylides gives substituted 3,4-*trans*-4-aryl-5cyano-3-pyridinio-1,2,3,4-tetrahydropyridine-6thiolates [2], while analogous reactions with ketones and 1,3-diketones provide substituted 4-aryl-3-cyanopyridine-2(1*H*)-thiones and 2-amino-4-aryl-3-cyano-5,6,7,8-tetrahydro-4*H*-benzo[*b*]pyran-5-ones [3].

In the present article we report on a new crossrecyclization of 4-alkyl(aryl, hetaryl)-2,6-diamino-4*H*thiopyran-3,5-dicarbonitriles **Ia–Ij** with 4-(cyclohex-1en-1-yl)morpholine (**II**) in boiling anhydrous ethanol. The products were the corresponding 4-substituted 2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitriles **IIIa–IIIg** (Scheme 1). The same compounds were synthesized previously from aryl(hetaryl)methylidene(cyano)thioacetamides and cyclohexanone [4] or 4-(cyclohex-1-en-1-yl)morpholine [5], as well as by condensation of 2-arylmethylidenecyclohexan-1-ones with cyano(thioacetamide) [6] or recyclization of 4-amino-6-aryl-2,2-pentamethylene-1,3-dithiacyclohex-4-ene-5-carbonitriles [7].

Presumably, the examined cross-recyclization involves opening of the thiopyran ring with formation of malononitrile (IV) and R-methylidene(cyano)thioacetamide A. Stork alkylation of the latter with enamine II [8] gives intermediate C which undergoes heterocyclization to substituted octahydroquinoline C. Depending on the R substituent, quinoline derivatives C can be transformed along two pathways. The first of these is dehydrogenation to 4-methyl-2-sulfanyl-8amorpholino-1,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile (V), and the second involves simultaneous dehydrogenation and elimination of morpholine to form 4-substituted 2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitriles IIIa–IIIg (Scheme 1). The structure of compounds IIIa-IIIg and V was confirmed by their physical constants and spectral data (see Experimental), as well as by chemical tranformations. Alkylation of thiol V with chloroacetamide (VIa) and chloroacetonitrile (VIb) in DMF in the presence of potassium hydroxide as a base gave sulfides VIIa and VIIb, respectively. Elimination of morpholine molecule from compound VIIa on heating in glacial acetic acid resulted in the formation of tetrahydroquinoline VIII.

The alkylation of partially hydrogenated substituted quinolinethiones IIIa–IIIg with alkyl halides VIc–VIg

I, R = Me₂CHCH₂ (a), 2-MeC₆H₄ (b), 4-O₂NC₆H₄ (c), 4-BrC₆H₄ (d), Ph (e), 4-FC₆H₄ (f), 2-thienyl (g), Me (h), 5-methylfuran-2yl (i), 4-Me₂CHC₆H₄ (j); III, R = 2-MeC₆H₄ (a), 4-FC₆H₄ (b), Ph (c), 4-BrC₆H₄ (d), Me₂CHCH₂ (e), 2-thienyl (f), 4-O₂NC₆H₄ (g); VI, Hlg = Cl (a, b, h, i, k), Br (c–g, j); Z = CONH₂ (a), CN (b), 2-oxo-2*H*-chromen-3-ylcarbonyl (c), 4-ClC₆H₄CO (d), naphthalen-2-ylcarbonyl (e), CH₂=CH (f), 4-BrC₆H₄CO (g), PhNHCO (h), 3,4-(HO)₂C₆H₃CO (i), EtOCO (j), 4-BrC₆H₄NHCO (k); VII, Z = CONH₂ (a), CN (b); IX, R = 4-FC₆H₄, Z = 4-ClC₆H₄CO (a), R = 4-FC₆H₄, Z = 2-oxo-2*H*-chromen-3-ylcarbonyl (b), R = Me₂CHCH₂, Z = naphthalen-2-ylcarbonyl (c), R = 4-O₂NC₆H₄, Z = 2-oxo-2*H*-chromen-3-ylcarbonyl (d); R = 4-BrC₆H₄, Z = 4-BrC₆H₄CO (e); R = 4-BrC₆H₄, Z = CH₂=CH (f); R = Ph, Z = 4-ClC₆H₄CO (g); R = 4-Me₂CHC₆H₄, Z = 2-oxo-2*H*-chromen-3-ylcarbonyl (h); R = 4-Me₂CHC₆H₄, Z = PhNHCO (i); R = 5-methylfuran-2-yl, Z = EtOCO (j); R = 5-methylfuran-2-yl, Z = 4-ClC₆H₄CO (k); R = 5-methylfuran-2-yl, Z = 3,4-(HO)₂C₆H₃CO (l); X, R = 4-Me₂CHC₆H₄, Z = PhNHCO (a); R = 2-thienyl, Z = 4-BrC₆H₄NHCO (b); XI, R = 2-thienyl, R' = 4-BrC₆H₄ (a), R = Me₂CHCH₂, R' = H (b).

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 3 2008

under analogous conditions regioselectively afforded sulfides **IXa–IXI** (method *a*). Compounds **IX** can also be synthesized in a one-pot mode from the corresponding thiopyrans **I**, enamine **II**, and alkyl halides **VI** without intermediate isolation of tetrahydroquinolines **III** (method *b*).

Sulfides IX are convenient as starting compounds for the synthesis of fused systems containing a tetrahydroquinoline fragment, e.g., 5,6,7,8-tetrahydrothieno-[2,3-b]quinoline [9] and 1,2,3,4,7,8,9,10-octahydropyrimido[4',5':4,5]thieno[2,3-b]quinoline [10]. Treatment of substituted 2-(phenylcarbamoylmethylsulfanyl)-5,6,7,8-tetrahydroquinoline IXi with alkali gave 3-amino-2-phenylcarbamoyl-5,6,7,8-tetrahydrothieno-[2,3-b] guinoline Xa (method a) which attracts interest as intermediate product for the synthesis of compounds possessing antimicrobial activity [11]. Compounds Xa and Xb are also readily obtained by cross-recyclization of thiopyrans Ia and Ig with morpholinocyclohexene II and alkyl halides VIc and VIj, followed by treatment of the reaction mixture with alkali (method b). Presumably, in this case intermediate thiol **D** undergoes alkylation to sulfide IX, and the subsequent intramolecular cyclization of IX yields substituted thienoquinolines X.

The structure of compounds **IX** and **X** is confirmed by spectral data. Sulfides **IX** characteristically displayed in the IR spectra absorption band at 2218– 2225 cm⁻¹ due to stretching vibrations of the conjugated cyano group. No such band was present in the IR spectra of 3-aminothienoquinolines \mathbf{X} ; instead, stretching and bending vibrations of the amino group in X gave rise to absorption bands at 3190-3480 and 1645- 1666 cm^{-1} , respectively. The ¹H NMR spectra of IX contained signals from protons in the tetrahydroquinoline fragment and substituents therein (see Experimental) and singlets from the SCH₂ protons at δ 4.01– 4.89 ppm. The latter signal was lacking in the spectra of compounds X, but broadened singlets from protons in the amino group appeared in the region δ 5.64– 6.13 ppm; these data are consistent with the cyclization of IX into substituted partially hydrogenated thienoquinolines X. Apart from spectral methods (see Experimental), the structure of compounds X was proved by chemical transformations. The known condensation of cyclohexanone with heterocyclic compounds containing amino and carboxamide groups at neighboring carbon atoms [10, 12] gave the corresponding spiro-fused heterocyclic systems XIa and XIb (method a) which are potential antimicrobial agents [12]. The same compounds were synthesized by one-pot reaction of thiopyrans I with enamine II, alkyl halides VIa and VIk, and cyclohexanone (method *b*).

The structure of 3-(4-bromophenyl)-2,2-pentamethylene-11-(2-thienyl)-1,2,3,4,7,8,9,10-octahydropyrimido[4',5':4,5]thieno[2,3-*b*]quinoline (**XIa**) was un-

Structure of the molecule of 3-(4-bromophenyl)-2,2-pentamethylene-11-(2-thienyl)-1,2,3,4,7,8,9,10-octahydropyrimido[4',5':4,5]-thieno[2,3-*b*]quinolin-4-one (**XIa**) according to the X-ray diffraction data. Principal bond lengths (Å) and bond angles (deg): $S^{1}-C^{9}$ 1.77(1), $S^{1}-C^{11}$ 1.76(1), $N^{1}-C^{1}$ 1.34(1), $N^{1}-C^{9}$ 1.32(1), $N^{2}-C^{10}$ 1.37(1), $N^{2}-C^{13}$ 1.48(1), $N^{3}-C^{12}$ 1.33(1), $N^{3}-C^{13}$ 1.51(1), $C^{9}S^{1}C^{11}$ 90.2(5), $C^{1}N^{1}C^{9}$ 115.4(9), $C^{10}N^{2}C^{13}$ 117.6(7), $C^{12}N^{3}C1^{13}$ 120.2(7).

415

ambiguously proved by X-ray analysis (see figure). We thus confirmed the direction of cross-recyclization of thiopyrans I with enamine II. The central bicyclic fragment $S^1N^1C^1C^6-C^{11}$ in molecule **XIa** is planar within 0.025Å; the dihedral angle between the $N^{1}C^{1}C^{6}-C^{9}$ and $S^{1}C^{1}C^{9}-C^{11}$ rings is as small as 1.3°. The bond length distribution in the bicyclic system suggests essential electron density delocalization. The $S^{2}C^{25}-C^{28}$ thiophene ring is almost orthogonal to the above plane for steric reasons: the corresponding dihedral angle is equal to 86.0°. The six-membered ring $N^{2}N^{3}C^{11}-C^{13}$ is appreciably nonplanar: deviations of atoms therein from the mean-square plane reach 0.294 Å; it adopts a *half-chair* conformation with the following Cramer–Pople parameters [13]: S = 0.63, $\Psi = 7.6$, and $\theta = 53.1^{\circ}$. The benzene ring $C^{19}-C^{24}$ forms with the $N^2N^3C^{11}-C^{13}$ ring a dihedral angle of 74.9°. The cyclohexane ring C^{13} - C^{18} has an almost undistorted chair conformation which is typical of cyclohexane derivatives: the endocyclic angles vary within a narrow range, from 53.5 to 55.7°. On the other hand, the C^1-C^6 cyclohexane ring fused to the bicyclic system S¹N¹C¹C⁶-C¹¹ exists in a half-boat conformation (S = 0.69, Ψ = 28.7, θ = 37.6°). The N³ atom has a planar-trigonal bond configuration [the sum of the bond angles is 358(2)°]. Effective conjugation between the lone electron pair on N³ and π system of the $C^{1}=O^{1}$ double bond induces shortening of the N³- C^{12} bond to 1.37(1) Å against the standard purely single $N(sp^2)-C(sp^2)$ bond (1.43–1.45 Å [14, 15]).

EXPERIMENTAL

The X-ray diffraction data for a 0.37-mm spherical single crystal of XIa were acquired at room temperature on an Enraf-Nonius CAD-4 automatic four-circle diffractometer (Mo K_{α} irradiation, $\lambda = 0.71169$ Å, scan rate ratio $2\theta/\omega = 1.2$, $\theta_{max} = 27^{\circ}$, spherical segment $0 \le h \le 13, 0 \le k \le 30, -12 \le l \le 12$). Total of 4916 reflections were measured, 4488 of which were symmetry-independent ($R_{int} = 0.062$). Monoclinic crystals with the following unit cell parameters: a = 10.418(2), b = 23.859(3), c = 10.060(4) Å; $\beta = 92.56(2)^{\circ}; V =$ 2948(2) Å³; Z = 4; $d_{calc} = 1.50 \text{ g/cm}^3$; $\mu = 18.1 \text{ cm}^{-1}$; F(000) = 1155.6, space group $P2_1/c$ (no. 14). The structure was solved by the direct method and was refined by the least-squares procedure in full-matrix anisotropic approximation using CRYSTALS software package [16]. The refinement procedure involved 1593 reflections with $I > 2\sigma(I)$ (316 refined parameters, 5.1 reflections per parameter). The positions of 90% of hydrogen atoms were determined by difference

synthesis of electron density, and the positions of the other hydrogen atoms were calculated from geometry considerations. All hydrogen atoms were included in the refinement procedure with fixed thermal and positional parameters. Chebyshev's weight scheme [17] with the following four parameters was used: 1.22, -0.91, 0.73, -0.39. The final divergence factors were R = 0.061 and $R_W = 0.061$, goodness of fit 1.171. The residual electron density from the Fourier difference series was 0.55 and $-0.59 e/Å^3$. Absorption by the crystal was taken into account by the azimuthal scanning technique [18].

The IR spectra were recorded in mineral oil on an IKS-40 spectrometer. The ¹H NMR spectra were measured on Bruker WP-100SY (100 MHz; V, VIIa, VIIb, VIII, IXa, IXb, IXf, IXg, IXk), Gemini-200 (199.975 MHz; IIIa-IIIe, XIa), Bruker AC-200 (200.13 MHz; IXi), Bruker WM-250 (250.13 MHz; IXc), Bruker AM-300 (300.13 MHz; IXj, IXI), Varian Mercury-400 (400.397 MHz; Ii, Ij, IXh, XIb), and Bruker DRX 500 instruments (500.13 MHz; IXd, IXe, **Xa**, **Xb**) using DMSO- d_6 as solvent and tetramethylsilane as internal reference. The mass spectra (electron impact, 70 eV) were obtained on a Kratos MS-890 mass spectrometer with direct sample admission into the ion source (IXe, IXi, Xa, Xb) and a Hewlett-Packard Chrommas 5890/5972 GC-MS system (IIIf, XIb; HP-5 MS column; samples were injected as solutions in methylene chloride). The melting points were determined on a Kofler hot stage. The progress of reactions and the purity of products were monitored by TLC on Silufol UV-254 plates using acetone-hexane (3:5) as eluent; spots were visualized by treatment with iodine vapor and UV irradiation.

4-Substituted 2,6-diamino-4H-thiopyran-3,5-dicarbonitriles Ia-Ij were synthesized according to the procedure described in [19]. The properties of compounds Ia [20], Ib [21], Ic [22], Id–If [19], Ig [23], and Ih [24] were reported previously.

2,6-Diamino-4-(5-methylfuran-2-yl)-4H-thiopyran-3.5-dicarbonitrile (Ii). Yield 1.83 g (71%), colorless wool-like material, mp 182–184°C (from AcOH). IR spectrum, v, cm⁻¹: 3212, 3333, 3479 (NH₂); 2210 sh (C≡N); 1647 (δ NH₂). ¹H NMR spectrum, δ , ppm: 2.26 s (3H, Me), 4.18 s (1H, 4-H), 6.89 d (1H, 3'-H, J = 2.95 Hz), 6.98 d (1H, 4'-H), 6.67 br.s (4H, NH₂). Found, %: C 55.71; H 3.77; N 21.50. C₁₂H₁₀N₄OS. Calculated, %: C 55.80; H 3.90; N 21.69.

2,6-Diamino-4-(4-isopropylphenyl)-4H-thiopyran-3,5-dicarbonitrile (Ij). Yield 2.40 g (81%), yellow crystals, mp 236–239°C (from EtOH). IR spectrum, v, cm⁻¹: 3190, 3327, 3465 (NH₂); 2200 sh (C=N); 1650 (δ NH₂). ¹H NMR spectrum, δ , ppm: 1.24 d (6H, Me, J = 7.12 Hz), 2.86 m (1H, CHMe₂), 4.15 s (1H, 4-H), 6.54 br.s (4H, NH₂), 7.16 d and 7.22 d (2H each, C₆H₄, J = 7.13 Hz). Found, %: C 64.69; H 5.28; N 18.75. C₁₆H₁₆N₄S. Calculated, %: C 64.84; H 5.44; N 18.90. *M* 296.39.

4-Substituted 2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitriles IIIa–IIIg (general procedure). 4-(Cyclohex-1-en-1-yl)morpholine (II), 1.64 ml (10 mmol), was added to a suspension of 10 mmol of the corresponding thiopyran I in 25 ml of anhydrous ethanol, and the mixture was heated for 2 h under reflux. The mixture was cooled, diluted with 10% hydrochloric acid to pH 5, and left to stand for 24 h. The precipitate was filtered off and washed with water, ethanol, and hexane.

4-(2-Methylphenyl)-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIa). Yield 1.79 g (64%), yellow powder, mp 226–228°C (from AcOH). IR spectrum, v, cm⁻¹: 3335 (NH), 2225 (C=N). ¹H NMR spectrum, δ , ppm: 1.65 m (4H, CH₂), 1.80 m (2H, CH₂), 2.12 s (3H, Me), 2.79 t (2H, CH₂, *J* = 6.18 Hz), 7.04 d (1H, H_{arom}, *J* = 6.14 Hz), 7.30 m (3H, H_{arom}), 13.86 br.s (1H, NH). Found, %: C 72.71; H 5.60; N 10.11. C₁₇H₁₆N₂S. Calculated, %: C 72.82; H 5.75; N 9.99.

4-(4-Fluorophenyl)-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIb). Yield 1.96 g (69%), yellow crystals, mp 256–258°C (from AcOH); published data [25]: mp 258–259°C.

4-Phenyl-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIc). Yield 1.86 g (70%), yellow powder, mp 240–242°C (from AcOH); published data [6]: mp 238°C (decomp.).

4-(4-Bromophenyl)-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIId). Yield 2.35 g (68%), yellow crystals, mp 260–262°C (from AcOH); published data [26]: mp 261–263°C.

4-Isobutyl-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIe). Yield 1.48 g (60%), yellow powder, mp 199–201°C (from AcOH); published data [27]: mp 198–200°C.

4-(2-Thienyl)-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIf). Yield 1.96 g (72%), yellow crystals, mp 215–217°C (from AcOH); published data [4]: mp 220–222°C. Mass spectrum: m/z 273 ($I_{rel} = 100\%$) [M + 1]⁺. **4-(4-Nitrophenyl)-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (IIIg).** Yield 2.46 g (79%), yellow powder, mp 252–254°C (from AcOH); published data [4]: mp 250°C (decomp.).

4-Methyl-8a-morpholino-2-sulfanyl-1,5,6,7,8,8ahexahydroquinoline-3-carbonitrile (V). 4-(Cyclohex-1-en-1-yl)morpholine (II), 1.64 ml (10 mmol), was added to a suspension of 1.92 g (10 mmol) of thiopyran **Ih** in 25 ml of anhydrous ethanol, and the mixture was heated for 2 h under reflux. The mixture was cooled, and the precipitate was filtered off and washed with anhydrous ethanol and hexane. Yield 2.2 g (75%), yellow powder, mp 237–239°C (sublimes at 210°C). IR spectrum, v, cm⁻¹: 3366 (NH), 2223 $(C \equiv N)$. ¹H NMR spectrum, δ , ppm: 1.70 m (4H, CH₂), 2.30 s (3H, Me), 2.44 t (2H, CH_2 , J = 7.12 Hz), 2.68 t $(2H, CH_2, J = 7.41 Hz), 3.03 t (4H, CH_2NCH_2, J =$ 4.28 Hz), 3.70 t (4H, CH₂OCH₂), 8.43 br.s (2H, NH, SH). Found, %: C 61.72; H 7.19; N 14.25. C₁₅H₂₁N₃OS. Calculated, %: C 61.82; H 7.26; N 14.42. M 291.42.

(3-Cyano-4-methyl-8a-morpholino-1,5,6,7,8,8ahexahydroquinolin-2-ylsulfanyl)acetamide (VIIa). Hexahydroquinoline V, 2.91 g (10 mmol), was dissolved in 10 ml of dimethylformamide, 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide and 0.94 g (10 mmol) of chloroacetamide (VIa) were added in succession, and the mixture was stirred for 2 h and diluted with an equal volume of water. The precipitate was filtered off and washed with water, ethanol, and hexane. Yield 2.92 g (84%), white powder, mp 175–177°C. IR spectrum, v, cm⁻¹: 3159, 3311, 3402, 3478 (NH, NH₂); 2228 (C≡N); 1690 (CONH). ¹H NMR spectrum, δ , ppm: 1.74 m (4H, CH₂), 2.32 s (3H, Me), 2.44 m (2H, CH₂), 2.79 m (2H, CH₂), 3.04 m (4H, CH₂OCH₂), 3.86 m (6H, SCH₂, CH₂NCH₂), 7.12 br.s and 7.49 br.s (1H each, NH₂), 7.87 br.s (1H, NH). Found, %: C 58.49; H 7.09; N 15.88. C₁₇H₂₄N₄O₂S. Calculated, %: C 58.60; H 6.94; N 16.08. M 348.47.

2-(Cyanomethylsulfanyl)-4-methyl-8a-morpholino-1,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile (VIIb) was synthesized in a similar way from 0.63 ml (10 mmol) of chloroacetonitrile (VIb). Yield 2.61 g (79%), white powder, mp 161–162°C. IR spectrum, v, cm⁻¹: 3321 (NH); 2258, 2222 (C=N). ¹H NMR spectrum, δ , ppm: 1.78 m (4H, CH₂), 2.36 s (3H, Me), 2.44 m (2H, CH₂), 2.88 m (6H, CH₂, CH₂NCH₂), 3.02 m (4H, CH₂OCH₂), 4.29 s (2H, SCH₂), 8.08 br.s (1H, NH). Found, %: C 61.65; H 6.62; N 17.09. C₁₇H₂₂N₄OS. Calculated, %: C 61.79; H 6.71; N 16.96. (3-Cyano-4-methyl-5,6,7,8-tetrahydroquinolin-2ylsulfanyl)acetamide (VIII) was obtained by recrystallization of 3.48 g (10 mmol) of compound VIIa from 15 ml of glacial acetic acid. Yield 2.01 g (77%), colorless crystals, mp 181–184°C. IR spectrum, v, cm⁻¹: 3302, 3407, 3479 (NH₂); 2228 (C≡N); 1684 (CONH). ¹H NMR spectrum, δ , ppm: 1.78 m (4H, CH₂), 2.32 s (3H, Me), 2.59 m (2H, CH₂), 2.81 m (2H, CH₂), 3.88 s (2H, SCH₂), 7.12 br.s and 7.53 br.s (1H each, NH₂). Found, %: C 59.60; H 5.66; N 15.88. C₁₃H₁₅N₃OS. Calculated, %: C 59.75; H 5.79; N 16.08.

Compounds **IXa–IXI** were synthesized (method *a*) as described above for sulfide **VIIa** from the corresponding thioxoquinolines **IIIa–IIIg** and halogen derivatives **VIc–VIj**.

2-(4-Chlorobenzoylmethylsulfanyl)-4-(4-fluorophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXa). Yield 3.22 g (74%), mp 222–224°C (from AcOH). IR spectrum, v, cm⁻¹: 2220 (C=N), 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.45–1.84 m (4H, CH₂), 2.30 t (2H, CH₂, J = 17.12 Hz), 2.51 m (2H, CH₂), 4.81 s (2H, SCH₂), 7.36 m (4H, 4-FC₆H₄), 7.65 d and 8.11 d (2H each, 4-ClC₆H₄, J = 7.92 Hz). Found, %: C 65.81; H 4.01; N 6.29. C₂₄H₁₈ClFN₂OS. Calculated, %: C 65.98; H 4.15; N 6.41. *M* 436.94.

4-(4-Fluorophenyl)-2-(2-oxo-2*H***-chromen-3-ylcarbonylmethylsulfanyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXb).** Yield 3.76 g (80%), mp 245–247°C (from AcOH). IR spectrum, v, cm⁻¹: 2224 (C=N); 1727, 1714 (C=O). ¹H NMR spectrum, δ , ppm: 1.64 m (4H, CH₂), 2.30 t (2H, CH₂, *J* = 7.12 Hz), 2.67 t (2H, CH₂, *J* = 7.25 Hz), 4.79 s (2H, SCH₂), 7.43–7.51 m (6H, H_{arom}), 7.78 m (1H, H_{arom}), 7.98 d (1H, H_{arom}, *J* = 8.01 Hz), 8.76 s (1H, 4'-H, chromene). Found, %: C 68.84; H 3.95; N 5.81. C₂₇H₁₉FN₂O₃S. Calculated, %: C 68.92; H 4.07; N 5.95.

4-Isobutyl-2-(naphthalen-2-ylcarbonylmethylsulfanyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXc). Yield 3.27 g (79%), mp 154–156°C (from AcOH). IR spectrum, v, cm⁻¹: 2225 (C=N), 1709 (C=O). ¹H NMR spectrum, δ , ppm: 0.95 d (6H, Me, J = 5.13 Hz), 1.60–1.77 m (6H, CH₂), 1.95 m (1H, CHMe₂), 2.54 m (2H, CH₂), 2.66 d (2H, CH₂, J =5.16 Hz), 4.87 s (2H, SCH₂), 7.51–7.73 m (2H, H_{arom}), 7.90–8.05 m (3H, H_{arom}), 8.11 d (1H, H_{arom}, J =6.02 Hz), 8.76 s (1H, 1'-H). Found, %: C 75.20; H 6.19; N 6.58. C₂₆H₂₆N₂OS. Calculated, %: C 75.33; H 6.32; N 6.76.

4-(4-Nitrophenyl)-2-(2-oxo-2*H*-chromen-3-ylcarbonylmethylsulfanyl)-5,6,7,8-tetrahydroquinoline**3-carbonitrile (IXd).** Yield 3.88 g (78%), mp 259–261°C (from BuOH). IR spectrum, v, cm⁻¹: 2219 (C=N); 1730, 1712 (C=O). ¹H NMR spectrum, δ , ppm: 1.59–1.84 m (4H, CH₂), 2.33 m (2H, CH₂), 2.79 m (2H, CH₂), 4.76 s (2H, SCH₂), 7.41 m (2H, H_{arom}), 7.61 d and 8.39 d (2H each, C₆H₄, *J* = 7.19 Hz), 7.75 m (1H, H_{arom}), 7.99 m (1H, H_{arom}), 8.73 s (1H, 4'-H, chromene). Found, %: C 65.00; H 3.72; N 8.33. C₂₇H₁₉N₃O₅S. Calculated, %: C 65.19; H 3.85; N 8.45.

2-(4-Bromobenzoylmethylsulfanyl)-4-(4-bromophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXe). Yield 4.39 g (81%), mp 231–233°C (from AcOH). IR spectrum, v, cm⁻¹: 2226 (C \equiv N), 1724 (C=O). ¹H NMR spectrum, δ , ppm: 1.33–1.82 m (4H, CH₂), 2.25 m (2H, CH₂), 2.54 m (2H, CH₂), 4.86 s (2H, SCH₂), 7.31 d and 7.72 d (2H each, C₆H₄, *J* = 7.79 Hz), 7.87 d and 8.18 d (2H each, C₆H₄CO, *J* = 8.02 Hz). Found, %: C 52.98; H 3.21; N 4.95. C₂₄H₁₈Br₂N₂OS. Calculated, %: C 53.16; H 3.35; N 5.17.

2-AllyIsulfanyl-4-(4-bromophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXf). Yield 2.54 g (66%), mp 172–174°C (from MeOH). IR spectrum, v, cm⁻¹: 2228 (C≡N). ¹H NMR spectrum, δ , ppm: 1.42– 1.95 m (4H, CH₂), 2.34 t (2H, CH₂, J = 6.82 Hz), 2.94 t (2H, CH₂, J = 7.02 Hz), 3.94 d (2H, SCH₂, J = 6.58 Hz), 5.12 d (1H, =CH₂, $J_{cis} = 9.55$ Hz), 5.32 d (1H, =CH₂, $J_{trans} = 17.40$ Hz), 5.79–6.14 m (1H, CH=), 7.34 d and 7.74 d (2H each, H_{arom}, J = 7.25 Hz). Found, %: C 59.06; H 4.22; N 7.09. C₁₉H₁₇Br₂N₂S. Calculated, %: C 59.23; H 4.45; N 7.27.

2-(4-Chlorobenzoylmethylsulfanyl)-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXg). Yield 3.01 g (72%), mp 198–200°C (from AcOH). IR spectrum, v, cm⁻¹: 2226 (C=N), 1727 (C=O). ¹H NMR spectrum, δ , ppm: 1.48–1.82 m (4H, CH₂), 2.30 m (2H, CH₂), 2.85 m (2H, CH₂), 4.81 s (2H, SCH₂), 7.30–7.58 m (5H, Ph), 7.65 d and 8.11 d (2H each, C₆H₄, *J* = 7.99 Hz). Found, %: C 68.69; H 4.42; N 6.48. C₂₄H₁₉ClN₂OS. Calculated, %: C 68.81; H 4.57; N 6.69.

b. Enamine II, 1.64 ml (10 mmol), was added to a suspension of 10 mmol of the corresponding thiopyran Ia–Ij in 25 ml of anhydrous ethanol, and the mixture was heated for 2 h under reflux. The mixture was cooled, 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide and 10 mmol of the corresponding halogen derivative VIc–VIg were added in succession under stirring, and the mixture was stirred for 4 h and diluted with an equal volume of water. The precipitate was filtered off, washed with water, ethanol, and hexane, and recrystallized from glacial acetic acid. We thus obtained compounds **IXa–IXI**; among these, sulfides **IXa–IXg** were identical in the IR spectra, TLC data (R_f values), and melting points (no depression of the melting point was observed on mixing) to those synthesized according to method *a*. Yield, %: **IXa**, 74; **IXb**, 68; **IXc**, 80; **IXd**, 78; **IXe**, 72; **IXf**, 64; **IXg**, 58.

4-(4-Isopropylphenyl)-2-(2-oxo-2*H***-chromen-3ylcarbonylmethylsulfanyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXh).** Yield 3.80 g (77%), mp 240–242°C (from AcOH). IR spectrum, v, cm⁻¹: 2222 (C=N), 1717 (C=O). ¹H NMR spectrum, δ , ppm: 1.26 d (6H, Me, J = 6.18 Hz), 1.61 m (2H, CH₂), 1.70 m (2H, CH₂), 2.35 t (2H, CH₂, J = 6.28 Hz), 2.71 t (2H, CH₂, J = 6.47 Hz), 2.99 m (1H, CHMe₂), 4.74 s (2H, SCH₂), 7.21 d and 7.38 d (2H each, C₆H₄, J = 7.02 Hz), 7.42 t (1H, H_{arom}, J = 7.62 Hz), 7.49 d (1H, H_{arom}, J = 7.58 Hz), 7.77 t (1H, H_{arom}, J =7.62 Hz), 7.96 d (1H, H_{arom}, J = 7.85 Hz), 8.74 s (1H, 4'-H, chromene). Found, %: C 72.70; H 5.11; N 5.42. C₃₀H₂₆N₂O₃S. Calculated, %: C 72.85; H 5.30; N 5.66.

2-[3-Cyano-4-(4-isopropylphenyl)-5,6,7,8-tetrahydroquinolin-2-ylsulfanyl]-N-phenylacetamide (IXi). Yield 3.13 g (71%), mp 192–194°C (from AcOH). IR spectrum, v, cm⁻¹: 2224 (C≡N), 1672 (CONH). ¹H NMR spectrum, δ , ppm: 1.29 d (6H, Me, J = 6.14 Hz), 1.52 m (2H, CH₂), 1.79 m (2H, CH₂), 2.38 t (2H, CH₂, J = 6.27 Hz), 2.88 t (2H, CH₂, J = 6.33 Hz), 2.99 m (1H, CHMe₂), 4.13 s (2H, SCH₂), 7.04 t (1H, C₆H₅, J = 6.95 Hz), 7.21 d and 7.39 d (2H each, C_6H_4 , J = 7.06 Hz), 7.28 t (2H, C_6H_5 , J =6.94 Hz), 7.58 d (2H, C_6H_5 , J = 6.96 Hz), 10.14 br.s (1H, NH). Mass spectrum, m/z (I_{rel} , %): 442 (4) $[M + 1]^+, 441 (9) [M]^+, 440 (5) [M - 1]^+, 349 (100)$ $[M - PhNH]^+$, 321 (72), 279 (84), 265 (10), 205 (11), 132 (8), 93 (32) $[PhNH_2]^+$, 77 (21) $[Ph]^+$, 65 (14), 43 (12) [CHMe₂]⁺. Found, %: C 73.28; H 5.95; N 9.38. C₂₇H₂₇N₃OS. Calculated, %: C 73.44; H 6.16; N 9.52. *M* 441.60.

Ethyl [3-cyano-4-(5-methylfuran-2-yl)-5,6,7,8tetrahydroquinolin-2-ylsulfanyl]acetate (IXj). Yield 2.88 g (81%), mp 92–93°C (from EtOH). IR spectrum, v, cm⁻¹: 2214 (C≡N), 1740 (C=O). ¹H NMR spectrum, δ, ppm: 1.20 t (3H, CH₂CH₃, J = 6.19 Hz), 1.68 m (2H, CH₂), 1.77 m (2H, CH₂), 2.36 s (3H, Me), 2.68 t (2H, CH₂, J = 6.22 Hz), 2.84 t (2H, CH₂, J = 6.19 Hz), 4.01 s (2H, SCH₂), 4.12 q (2H, OCH₂, J = 6.19 Hz), 6.38 d (1H, 3'-H, J = 2.14 Hz), 6.93 d (1H, 4'-H, J = 2.14 Hz). Found, %: C 63.89; H 5.42; N 7.76. C₁₉H₂₀N₂O₃S. Calculated, %: C 64.02; H 5.66; N 7.86. **2-(4-Chlorobenzoylmethylsulfanyl)-4-(5-methylfuran-2-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (IXk).** Yield 3.59 g (85%), mp 150–151°C (from AcOH). IR spectrum, v, cm⁻¹: 2216 (C=N), 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.61–1.84 m (4H, CH₂), 2.42 s (3H, Me), 2.59 m (2H, CH₂), 2.24 m (2H, CH₂), 4.69 s (2H, SCH₂), 6.30 d (1H, 3'-H, *J* = 2.15 Hz), 6.87 d (1H, 4'-H, *J* = 2.15 Hz), 7.52 d and 8.07 d (2H each, C₆H₄, *J* = 8.57 Hz). Found, %: C 65.13; H 4.39; N 6.52. C₂₃H₁₉ClN₂O₂S. Calculated, %: C 65.32; H 4.53; N 6.62.

2-(3,4-Dihydroxybenzoylmethylsulfanyl)-4-(5-methylfuran-2-yl)-5,6,7,8-tetrahydroquinoline-3carbonitrile (IXI). Yield 3.36 g (80%), white powder, mp 171–173°C (from AcOH). IR spectrum, v, cm^{-1} : 3540 (OH), 2218 (C=N), 1704 (C=O). ¹H NMR spectrum, δ, ppm: 1.61–1.89 m (4H, CH₂), 2.40 s (3H, Me), 2.62-2.81 m (4H, CH₂), 4.68 s (2H, SCH₂), 6.32 d $(1H, 3'-H, J = 2.84 Hz), 6.80-6.92 m (2H, H_{arom}),$ 7.35-7.49 m (2H, H_{arom}), 9.14 br.s and 9.62 br.s (1H each, OH). Mass spectrum, m/z (I_{rel} , %): $[M]^+$ is missing, 283 (43) $[M - 3, 4-(HO)_2C_6H_3CO]^+$, 270 (35), 269 (14), 241 (22), 227 (20), 209 (11), 200 (18), 152 (44), 137 (100) $[3,4-(HO)_2C_6H_3CO]^+$, 109 (33), 81 (22), 77 (17) [Ph]⁺, 65 (11), 63 (23). Found, %: C 65.52; H 4.61; N 6.49. C₂₃H₂₀N₂O₄S. Calculated, %: C 65.70; H 4.79; N 6.66. *M* 420.49.

3-Amino-4-(4-isopropylphenyl)-N-phenyl-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide (Xa). a. Compound IXi, 4.41 g (10 mmol), was dissolved in 10 ml of DMF, 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide was added, and the mixture was stirred for 5 h and diluted with an equal volume of water. The precipitate was filtered off and washed in succession with water, ethanol, and hexane. Yield 3.66 g (83%), yellow crystals, mp 235–237°C (from AcOH). IR spectrum, v, cm⁻¹: 3195, 3288, 3410 (NH₂); 1674 (CONH), 1641 (δNH₂). ¹H NMR spectrum, δ , ppm: 1.31 d (6H, Me, J = 6.13 Hz), 1.72 m $(2H, CH_2)$, 1.89 m $(2H, CH_2)$, 2.40 t $(2H, CH_2, J =$ 6.31 Hz), 3.02 m (3H, CH₂, CHMe₂), 5.64 br.s (2H, NH₂), 7.02 t (1H, H_{arom}, J = 6.92 Hz), 7.28 m (4H, H_{arom}), 7.45 d (2H, H_{arom}, J = 7.22 Hz), 7.63 d (2H, H_{arom} , J = 7.34 Hz), 9.23 br.s (1H, NH). Mass spectrum, m/z (I_{rel} , %): 443 (6) $[M+2]^+$, 442 (10) $[M+1]^+$, 441 (34) $[M]^+$, 349 (100) $[M - PhNH]^+$, 278 (42), 119 (18), 93 (29) $[PhNH_2]^+$, 77 (14) $[Ph]^+$, 65 (15), 43 (22) [CHMe₂]⁺. Found, %: C 73.28; H 6.02; N 9.38. C₂₇H₂₇N₃OS. Calculated, %: C 73.44; H 6.16; N 9.52. M 484.44.

b. Compounds **Xa** and **Xb**. Enamine **II**, 1.64 ml (10 mmol), was added to a suspension of 10 mmol of thiopyran **Ia** or **Ig** in 25 ml of anhydrous ethanol, and the mixture was heated for 2 h under reflux. The mixture was allowed to cool down, 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide and 10 mmol of halogen derivative **VIh** or **VIk** was added, the mixture was stirred for 4 h, an additional 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide was added, and the mixture was stirred for 4 h and diluted with an equal volume of water. The precipitate was filtered off and washed with water, ethanol, and hexane. Yield of **Xa** 3.22 g (73%).

3-Amino-4-(2-thienyl)-5,6,7,8-tetrahydrothieno-[2,3-b]quinoline-2-carboxamide (Xb). Yield 4.50 g (93%), yellow-green powder, mp 277-278°C (from AcOH; sublimes at 220°C); compound **Xb** shows fluorescence upon UV urradiation. IR spectrum, v, cm⁻¹: 3202, 3334, 3465 (NH₂); 1668 (CONH); 1645 (δNH_2) . ¹H NMR spectrum, δ , ppm: 1.70 m (2H, CH₂), 1.84 m (2H, CH₂), 2.52 m (2H, CH₂), 3.00 t (2H, CH₂, J = 6.19 Hz), 6.13 br.s (2H, NH₂), 7.20 d (1H, 3'-H, J = 2.95 Hz), 7.25 d.d (1H, 4'-H, J = 2.40 Hz), 7.35 d and 7.64 d (2H each, C_6H_4 , J = 7.08 Hz), 7.79 d (1H, 5'-H, J = 3.71 Hz), 9.24 br.s (1H, NH). Mass spectrum, m/z ($I_{\rm rel}$, %): 486 (4) $[M + 2]^+$, 485 (10) $[M + 1]^+$, 484 (11) $[M]^+$, 313 (100) $[M - BrC_6H_4NH]^+$, 171 (9) $[BrC_6H_4NH]^+$, 91 (14), 77 (8) $[Ph]^+$, 40 (35). Found, %: C 54.41; H 3.58; N 8.49. C₂₂H₁₈BrN₃OS₂. Calculated, %: C 54.55; H 3.75; N 8.67. M 484.43.

3-(4-Bromophenyl)-2,2-pentamethylene-11-(2-thienyl)-1,2,3,4,7,8,9,10-octahydropyrimido-[4',5':4,5]thieno[2,3-b]quinolin-4-one (XIa). a. A mixture of 4.84 g (10 mmol) of compound Xa and 1.03 ml (10 mmol) of cyclohexanone in 25 ml of glacial acetic acid was heated for 2 h under reflux. The mixture was cooled, and the yellow crystals were filtered off and washed with glacial acetic acid and diethyl ether. Yield 3.84 g (68%), mp 266-268°C. IR spectrum, v, cm⁻¹: 3410 (NH), 1712 (C=O). ¹H NMR spectrum, δ, ppm: 0.82 m (4H, CH₂), 1.01–1.44 m (6H, CH₂), 1.62–1.97 m (4H, CH₂), 2.11 m (2H, CH₂), 2.99 m (2H, CH₂), 4.58 br.s (1H, NH), 7.14 d and 7.58 d (2H each, C_6H_4 , J = 8.00 Hz), 7.32 m (2H, 3'-H, 4'-H), 7.89 d (1H, 5'-H). Found, %: C 59.41; H 4.38; N 7.30. C₂₈H₂₆BrN₃OS₂. Calculated, %: C 59.57; H 4.64; N 7.44. M 564.57.

b. Compounds XIa and XIb. Enamine II, 1.64 ml (10 mmol), was added to a suspension of 10 mmol of thiopyran Ia or Ig in 25 ml of anhydrous ethanol, and

the mixture was heated for 2 h under reflux. The mixture was cooled, 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide and 10 mmol of halogen derivative VIa or VIk were added in succession under stirring, the mixture was stirred for 4 h, an additional 5.6 ml (10 mmol) of 10% aqueous potassium hydroxide was added, and the mixture was stirred for 4 h and diluted with an equal volume of water. The precipitate was filtered off and washed in succession with water, ethanol, and hexane, 1.03 ml (10 mmol) of cyclohexanone and 25 ml of glacial acetic acid were added, and the mixture was heated for 2 h under reflux. After cooling, the precipitate was filtered off and washed with glacial acetic acid and diethyl ether. Yield 4.79 g (95%). The $R_{\rm f}$ value, IR spectrum, and melting point of XIa coincided with the corresponding parameters of a sample synthesized as described above according to method *a*.

11-Isobutyl-2,2-pentamethylene-1,2,3,4,7,8,9,10octahydropyrimido[4',5':4,5]thieno[2,3-*b*]quinolin-**4-one (XIb).** Yield 3.06 g (80%), white powder, mp 219–221°C (fluoresces under UV irradiation). IR spectrum, v, cm⁻¹: 3190–3266 (NH), 1684 (CONH). ¹H NMR spectrum, δ, ppm: 0.92 d (6H, Me, J =5.12 Hz), 1.27–1.73 m (8H, CH₂), 1.84 m (2H, CH₂), 2.03 d (2H, CH₂CH, J = 5.48 Hz), 2.19 m (1H, CH₂CH), 2.76 m (2H, CH₂), 2.93 m (6H, CH₂), 5.19 br.s (1H, NH), 7.75 br.s (1H, NHCO). Mass spectrum: m/z 384 ($I_{rel} =$ 100%) [M + 1]⁺. Found, %: C 68.69; H 7.48; N 11.12. C₂₂H₂₉N₃OS. Calculated, %: C 68.89; H 7.62; N 10.96. *M* 383.56.

REFERENCES

- Shams, H.Z., Elkholy, Y.M., Ibrahim, N.S., and Elnagdi, M.H., J. Prakt. Chem., 1988, vol. 330, p. 817.
- Shestopalov, A.M., Sharanin, Yu.A., and Litvinov, V.P., *Zh. Org. Khim.*, 1991, vol. 27, p. 1349.
- Sharanin, Yu.A. and Shestopalov, A.M., Zh. Org. Khim., 1989, vol. 25, p. 1331.
- 4. Elgemeie, G.H., Elfahham, H.A., and Mekhamer, R., *Sulfur Lett.*, 1988, vol. 8, p. 187.
- Dyachenko, V.D. and Litvinov, V.P., *Khim. Geterotsikl.* Soedin., 1997, p. 1384; Sharanin, Yu.A., Rodinovskaya, L.A., Promonenkov, V.K., Mortikov, V.Yu., and Shestopalov, A.M., *Zh. Org. Khim.*, 1985, vol. 21, p. 683.
- Vieweg, H., Leistner, S., and Wagner, G., *Pharmazie*, 1988, vol. 43, p. 358.
- Sharanin, Yu.A., Litvinov, V.P., Shestopalov, A.M., Nesterov, V.N., Struchkov, Yu.T., Shklover, V.E., Promonenkov, V.K., and Mortikov, V.Yu., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, p. 1768.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 3 2008

- Stork, G. and Landesman, H.K., J. Am. Chem. Soc., 1956, vol. 78, p. 5128; Stork, G., Brizzolara, A., Landesman, H.K., Szmuszkovicz, J., and Terrel, R., J. Am. Chem. Soc., 1963, vol. 85, p. 207.
- Sharanin, Yu.A., Goncharenko, M.P., Shestopalov, A.M., Litvinov, V.P., and Turov, A.V., *Zh. Org. Khim.*, 1991, vol. 27, p. 1996; Dyachenko, V.D., Abstracts of Papers, *XIX Ukrain'ska konferentsiya z organichnoï khimii* (XIXth Ukrainian Conf. on Organic Chemistry), L'viv, 2001, p. 274.
- 10. Bakhite, E.A., J. Chem. Res., Synop., 2000, p. 500.
- Awad, M.A.I., Abdel-Rahman, A.E., and Bakhite, E.A., *Phosphorus, Sulfur Silicon Relat. Elem.*, 1991, vol. 57, p. 293; Awad, M.A.I., Abdel-Rahman, A.E., and Bakhite, E.A., *Collect. Czech. Chem. Commun.*, 1991, vol. 56, p. 1749; Geies, A.A., Bakhite, E.A., and El-Kashef, H.S., *Pharmazie*, 1998, vol. 53, p. 686.
- Bakhite, E.A., Abdel-Rahman, A.E., and Al-Taifi, E.A., *Phosphorus, Sulfur Silicon Relat. Elem.*, 2004, vol. 179, p. 513.
- 13. Zefirov, N.S. and Palyulin, V.A., *Dokl. Akad. Nauk SSSR*, 1980, vol. 252, p. 111.
- 14. Burke-Laing, M. and Laing, M., Acta Crystallogr., Sect. B., 1976, vol. 32, p. 3216.
- 15. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1987, p. S1.
- Watkin, D.J., Prout, C.K., Carruthers, J.R., and Betteridge, P.W., *CRYSTALS. Issue 10*, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.

- 17. Carruthers, J.R. and Watkin, D.J., *Acta Crystallogr., Sect. A*, 1979, vol. 35, p. 698.
- 18. North, A.C.T., Phillips, D.C., and Mathews, F.S., *Acta Crystallogr., Sect. A*, 1968, vol. 24, p. 351.
- Sharanin, Yu.A., Shestopalov, A.M., Nesterov, V.N., Melenchuk, S.N., Promonenkov, V.K., Shklover, V.E., Struchkov, Yu.T., and Litvinov, V.P., *Zh. Org. Khim.*, 1989, vol. 25, p. 1323.
- Dyachenko, V.D., Krivokolysko, S.G., Nesterov, V.N., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 1997, p. 1655.
- Dyachenko, V.D., Krivokolysko, S.G., Sharanin, Yu.A., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 1997, p. 909.
- Dyachenko, V.D., Krivokolysko, S.G., Sharanin, Yu.A., and Litvinov, V.P., *Russ. J. Org. Chem.*, 1997, vol. 33, p. 1014.
- Matrosova, S.V., Zav'yalova, V.K., Litvinov, V.P., and Sharanin, Yu.A., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, p. 1643.
- 24. Elnagdi, M.H. and Erian, A.W., Bull. Soc. Chim. Fr., 1995, vol. 132, p. 920.
- Sharanin, Yu.A., Shestopalov, A.M., Promonenkov, V.K., and Rodinovskaya, L.A., *Zh. Org. Khim.*, 1984, vol. 20, p. 1539.
- Sharanin, Yu.A., Goncharenko, M.P., Shestopalov, A.M., Litvinov, V.P., and Turov, A.V., *Zh. Org. Khim.*, 1991, vol. 27, p. 1996.
- Dyachenko, V.D., Krivokolysko, S.G., and Litvinov, V.P., Khim. Geterotsikl. Soedin., 1998, p. 81.